Образец перевода: Device and method for fragmenting and removing concretions from body ducts and cavities

Образец перевода (Translation sample):
English original

Device and method for fragmenting and removing concretions from body ducts and cavities

FIELD OF THE INVENTION
This invention relates to a device and method for fragmenting abnormal concretions and extracting their pieces from hollow bodies, and in particular, to a medical instrument for fragmenting and removing solid calculous formations from the ducts and cavities of a living body.
BACKGROUND OF THE INVENTION
Several techniques are employed in clinical practice for breaking abnormal concretions appearing in the biliary and/or urinary system of a human body into pieces for further removal of the pieces from the body. The term "concretion" as used herein refers to solid calculous formations of urates, oxalates and phosphates, e.g. gallstones, kidney stones, cystine stones and other calculi, lodged in the ducts and cavities of a living body. Although procedures have varied, most of them have involved dilatating, anesthetizing and lubricating the urinary or biliary tract, and then attempting to grasp the calculus for crushing it, and then dragging it out.
For example, extra- and intra-corporeal shock wave lithotripsy is widely used which employs high-energy shock waves to fragment and disintegrate calculi. In extracorporeal shock-wave lithotripsy, an energy needed for stone fragmentation, in the form of shock waves, is transferred from an outside source through body tissue to the calculi. In turn, intra-corporeal shock wave lithotripsy utilizes a probe advanced with the aim of an endoscope and positioned in proximity to the calculus. The shock waves, required for fragmentation, are transferred through the probe to the calculus, and the treatment process can be visualized during fragmentation.
Ultrasonic lithotripsy technique is known that utilizes an ultrasound probe emitting high-frequency ultrasonic energy towards a concretion. For this technique, direct contact of the probe tip and stone is essential for effectiveness of ultrasonic lithotripsy.
Lasers are known as an alternative source of energy in lithotripsy, especially for the destruction of renal and biliary stones. Various types of laser lithotripsy probes with a variety of laser sources, including pulsed dye laser, alexandrite laser, neodymium laser, holmium laser and other lasers, have been developed.
Electrohydraulic lithotripsy (EHL) has been an accepted form of therapy for the destruction of urinary stones both in the human bladder and within the individual ureters. EHL is extremely effective in breaking large urinary stones into pieces small enough for basket extraction or simple passage. When EHL is selected to affect the destruction of the stone, the EHL probe is placed in proximity to the stone. By means of an electrical discharge, a shock wave is produced which impacts the surface of the stone and produces tiny cracks. When enough cracks have been made, the stone shatters into small pieces. The individual pieces can then be attacked one at a time, or they can further be removed by basket extraction.
A lithotripsy technique of electro-impulse destruction of materials is also known in the art (see, for example, U.S. Pat. No. 7,087,061 to Chernenko, et al). Contrary to electrohydraulic destruction, employing electrodes which are not in direct contact with the object, electro-impulse destruction utilizes a probe with electrodes which are placed directly on the object’s surface. This technique is based on the Vorob’evs effect that provides certain features of the discharge observed when a solid dielectric in contact with two rodlike electrodes is placed in a liquid dielectric medium, and a voltage pulse with increasing front is applied to the electrodes. According to this effect, when the pulse front slope is small (e.g., the pulse rise time is more than about 0.5 microseconds), the discharge develops in the surrounding liquid over the solid dielectric surface rather than penetrateing into the solid body. On the other hand, in the case of a sufficiently large slope of the pulse front, the discharge propagates through the solid and produces its fracture with cleavage of the surface fragments (see, for example, G.A. Masyats, Technical Physics Letters, Vol. 31, No. 12, 2005, pp. 1061–1064. Translated from Russian from Pis’ma v Zhurnal Tekhnicheskoi Fiziki, Vol. 31, No. 24, 2005, pp. 51–59).
A problem associated with lithotripsy probes is that the calculi are not captured during treatment. For example, a stone can be pushed along the ureter towards the kidney in response to efforts to treat it. Likewise, the stone can also move to the side of the catheter and wedge between the ureter wall and the catheter.
There are known medical devices combining a lithotripsy probe used to break calculi with a retrieval collapsible wire basket that allows a secure hold on a urinary or biliary stone, while the destructive forces of the lithotripsy probe are used to shatter the stone. One of the advantages of such combined lithotripsy devices is in the fact that the operator using such a device is not required to change a lithotripsy probe and a retrieval basket in the middle of the procedure, within the very restrictive confines of the urinary or biliary tract.
For example, U.S. Pat. No. 5,176,688 to Narayan, et al. describes a stone extractor and method in which a stone is captured in a retrieval basket at the distal end of an elongated tubular member and broken into pieces while it is held by the basket. The stone is broken up by a reciprocating shaft which extends through the tubular member into the basket and is driven toward the stone by a spring to provide an effective hammering action without injuring the surrounding tissue. The stone is removed from the body by withdrawing the tubular member from the body with the pieces of the stone in the basket.
U.S. Pat. No. 5,397,320 to Mitchell, et al. describes a laparoscopic surgical device which comprises an elongated shaft having a plurality of electrically conductive flexible ribs connected to the distal end of the shaft and to one another to form a cage or basket. Upon placement of an organic body in the cage, the ribs are electrically energized. The organic body is pressed against the ribs to dissect the ribs in a single cauterization operation.
U.S. Pat. No. 6,319,261 to Bowers describes a combination lithotripsy device for the destruction of calculi such as urinary stones in the human bladder, individual urinary ureters, the biliary tract, or other locations in the human body. More specifically, the device includes an electrohydraulic probe combined with a basket which consists of multiple electrical conduit wires that act both as electrical conduits and collectively act as a grasping device.

SUMMARY OF THE INVENTION
There is a need in the art for, and it would be useful to have a novel medical device combining lithotriptic and retrieval features, which is capable to be safely introduced into the confined space of the individual ureter, urinary bladder or biliary tract, to secure the concretion, shatter the concretion into smaller pieces, and retrieve the pieces from the body tracts.
It would also be advantageous to have a method for destruction and removal of the concretion utilizing the device of the present invention.
The present invention satisfies the aforementioned need by providing a novel medical device for entrapping concretions in ducts and cavities of a living body, breaking them into smaller pieces and removing the pieces from the body. The medical device includes a dilator sheath, a lithotripsy probe, a tubular member mounted within the dilator sheath and accommodating the lithotripsy probe, and a retrieval basket coupled to the tubular member.
The dilator sheath is adapted to penetrate into a passage of the body to reach the location where the concretion to be shattered into smaller pieces is located. The lithotripsy probe is configured for shattering the concretion into smaller pieces. The tubular member has a proximal member end, a distal member end and an axially extending inner lumen provided within the tubular member to permit the lithotripsy probe to be inserted into the tubular member from the proximal end. The retrieval basket is configured for entrapping and retaining the concretion and the smaller pieces for their extraction from the body. It should be noted that in the description and claims that follow, the terms "proximal" and "distal" are used with reference to the operator of the medical device.
The retrieval basket comprises a structure that has a basket proximal portion and a basket distal portion. The structure is constituted by a plurality of filaments extending from a basket proximal end towards a basket distal end, and then returning to the proximal end after forming a plurality of filament loops in the basket distal portion, and a plurality of filament strands at the basket proximal portion. The sides of the filament loops are connected to the sides of adjacent loops at the distal portion of the basket to form a net defining a distal opening at the basket distal end and a plurality of side openings along the structure of the basket. The distal opening in the basket has such dimension so that to permit the lithotripsy probe to protrude through the distal opening.
According to an embodiment of the present invention, the connection of the loops is achieved by twisting the filaments forming the corresponding sides of the adjacent loops by at least one turn.
The filaments forming the structure of the basket can be either single-core wires or multiwire strands.
According to one embodiment of the present invention, the filaments forming the structure of the basket are made of a metallic material having super elastic and thermo-mechanical shape memory characteristics. For example, the metallic material can be a NiTi based alloy. Likewise, the metallic material can be stainless steel.
When desired, the metallic material can include a radiopaque material. The radiopaque material can, for example, be at least one of the following metals: Pt, Au, Ag, Pd, W, Nb, Co, and Cu.
According to another embodiment of the present invention, the filaments can be made of a core tube containing an axially disposed radiopaque wire.
According to a further embodiment of the present invention, the medical device can comprise one or more radiopaque markers attached to one or more loops.
When the filaments forming the structure of the basket are multiwire strands, they can include a central core wire and at least one another wire twisted about the central core wire. When desired, such another wire is made of a material having a level of radiopacity greater than the level of radiopacity of the central core wire.
According to yet a further embodiment of the present invention, the filaments are made of non-metallic material. Examples of the non-metallic material include, but are not limited to, Capron and Nylon.
According to an embodiment of the present invention, the dilator sheath is made of a flexible strong material that can, for example, be a plastic material or a composite material. The tubular member is a deflectable tube. Examples of materials suitable for the tubular member include, but are not limited to, polyimide, nylon, and polyester.
According to an embodiment of the present invention, the tubular member distal end has a hollowed-out portion for connecting the tubular member to the filament strands of the retrieval basket along the surface circumference of the hollowed-out portion.
According to an embodiment of the present invention, the medical device comprises a tube put on the filament strands at the hollowed-out portion. Preferably, but not mandatory, the tube is made of a thermo-shrinkable material.
Examples of the lithotripsy probe include, but are not limited to, an electro-hydraulic lithotripsy probe, an electro-impulse lithotripsy probe, an ultrasonic wave lithotripsy probe, a mechanic lithotripsy probe, and a laser light lithotripsy probe.
The aforementioned need is also satisfied by providing a method for breaking a concretion in a body it into smaller pieces and removing the pieces from the body by using a medical device of the present invention.
A particular order of the method steps depends on the size of a concretion. When the concretion is smaller than the side openings in the structure of the basket, the concretion can first be captured by the basket and immobilized therein. The entrapped concretion can be shattered into pieces. In this case, the method includes the steps of:
(a) inserting the medical device in a basket closed position through an endoscope into the body into proximity with the concretion;
(b) manipulating the tubular member and the dilator sheath for opening the retrieval basket, entrapping the concretion in the retrieval basket, and closing the basket around the concretion;
(c) manipulating the lithotripsy probe for protruding thereof from the lumen in the tubular member and bringing thereof into proximity with the concretion entrapped in the retrieval basket;
(d) energizing the lithotripsy probe to cause the concretion to break into smaller pieces; and
(e) removing the medical device from the body together with at least one piece of the concretion immobilized within the basket.
On the other hand, when the concretion is relatively large, and cannot pass through the side openings in the structure of the basket, the concretion should first be shattered into pieces by using the lithotripsy probe. In this case, the method includes the steps of:
(a) inserting the medical device in a basket closed position through an endoscope into the body into proximity with the concretion;
(b) manipulating the lithotripsy probe for protruding thereof from the lumen in the tubular member and the distal opening of the basket to bring the lithotripsy probe into proximity with the concretion entrapped in the retrieval basket;
(c) energizing the lithotripsy probe to cause the concretion to break into smaller pieces;
(d) manipulating the tubular member and the dilator sheath for opening the retrieval basket, entrapping at least one piece of the concretion in the retrieval basket, and closing the basket around the piece; and
(e) removing the medical device from the body together with the piece of the concretion immobilized within the basket.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows hereinafter may be better understood. Additional details and advantages of the invention will be set forth in the detailed description, and in part will be appreciated from the description, or may be learned by practice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, preferred embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Fig. 1 is a schematic side cross-sectional view of a distal portion of a medical device in a deployed position, according to one embodiment of the present invention;
Figs. 2A and 2B illustrate a schematic side elevational view, partially broken away, of a distal portion of the medical device shown in Fig. 1, showing a foreign object arranged in front of the retrieval basket being in an opened position and in a retracted position, correspondingly;
Fig. 2C illustrates a schematic side elevational view, partially broken away, of a distal portion of the medical device shown in Fig. 1, showing a foreign object being entrapped inside the basket;
Fig. 3 illustrates a plan view of a distal portion of a medical device of the present invention having a retrieval basket according to one embodiment of the present invention;
Fig. 4 illustrates a plan view of a distal portion of a medical device of the present invention having a retrieval basket according to another embodiment of the present invention;
Fig. 5 illustrates a plan view of a distal portion of a medical device of the present invention having a retrieval basket according to a further embodiment of the present invention;
Fig. 6A illustrates schematically the juxtaposition of the concretion and the impact tip of the electro-hydraulic lithotripsy probe;
Fig. 6B illustrates schematically the juxtaposition of the concretion and the impact tip of the electro-impulse lithotripsy;
Fig. 7 illustrates schematically the juxtaposition of the concretion and the impact tip of the ultrasonic lithotripsy probe;
Fig. 8 illustrates schematically the juxtaposition of the concretion and the impact tip of the mechanical lithotripsy probe; and
Fig. 9 illustrates schematically the juxtaposition of the concretion and the impact tip of the laser lithotripsy probe.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
The principles of the method for the medical device according to the present invention may be better understood with reference to the drawings and the accompanying description, wherein like reference numerals have been used throughout to designate identical elements. It being understood that these drawings which are not necessarily to scale, are given for illustrative purposes only and are not intended to limit the scope of the invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements. Those versed in the art should appreciate that many of the examples provided have suitable alternatives which may be utilized.
Fig. 1 illustrates a schematic side cross-sectional view of a distal portion of a medical device 10 in a deployed position, according to one embodiment of the present invention. The medical device 10 includes an elongated, catheter-like tubular member 11 which has a tubular member proximal end (not shown), a tubular member distal end 12 and an axially extending inner lumen 13 provided within the tubular member 11 to permit a lithotripsy probe 14 to be inserted into the tubular member 11 from the proximal end. The tubular member 11 is a deflectable tube fabricated of a relatively stiff yet somewhat pliant material, which permits the device to be introduced into a patient's body (not shown) along a tortuous path. Examples of materials suitable for the tubular member 11 include, but are not limited to, polyimide, nylon, polyester, etc.
The lithotripsy probe 14 is mounted within the inner lumen 13 so that it may be extended or retracted by an operator (not shown). It should be noted that the present invention is not limited to a specific kind of lithotripsy technique for breaking concretions. Generally, the lithotripsy probe 14 includes an impact tip 141, a control cable (rod) 142 coupled to the tip 141, and an energy unit (not shown) coupled to the control cable 142. In operation, the impact tip 141 is placed against the concretions, e.g., stone, (not shown) and the energy unit is activated to provide energy sufficient for breaking the stone into much smaller fragments. Various types of the lithotripsy probe 14 suitable for the purpose of the present invention will be described more fully below in connection with Figs. 6A, 6B, 7, 8 and 9.
The medical device 10 further includes a dilator sheath 15 formed as a tubular catheter. The dilator sheath 15 is a thin-walled, cylindrical flexible tube adapted to penetrate into a body passage (not shown) to reach the location where the concretion to be shattered into smaller pieces, is located. The catheter-like tubular member 11 is mounted within the dilator sheath 15, and can be manipulated by the operator from the outside at the sheath’s proximal end (not shown). For example, the dilator sheath 15 can be made of a flexible, durable, strong plastic material, such as polyimide, polyvinyl chloride, nylon, teflon, etc. The dilator sheath 15 can also be made of a composite material, such as a wire mesh or a coil, (e.g., stainless steel coil). When desired, the sheath 15 may be multi-layered with different materials in order to provide a graduated bending and stiffness characteristic over its length.
The medical device 10 further includes a retrieval basket 16 coupled to the catheter-like tubular member 11 at the tubular member distal end 12. The retrieval basket 16 is used in a ureter, urinary bladder or biliary tract (not shown) to trap the concretion that can be shattered into smaller pieces by the lithotripsy probe 14, and to retrieve the pieces from the body tracts.
A plan view of the retrieval basket 16 in a deployed (opened) position is illustrated in Fig. 1, according to one embodiment of the present invention. In general, the structure of the retrieval basket 16 comprises a proximal portion 161 and a distal portion 162, and is constituted by a plurality of filaments fabricated from one or more wires that extend from a basket proximal end 163 towards a basket distal end 164 and then return after winding to the proximal end 163 to form a plurality of filament loops 165. After forming the loops in the distal portion 162, the filaments are bound together in filament strands 166 at the proximal portion 161 of the basket.
According to one embodiment of the invention, each filament forming the structure of the basket is a single-core wire. According to another embodiment of the invention, each filament is a multi-wire strand.
The filaments of the retrieval basket 16 can each have a cross-sectional diameter in the range of from about 0.05 mm to about 0.15 mm. The diameters of the filaments may vary from wire-to-wire and/or along the lengths of each wire.
The filaments utilized for the fabrication of the retrieval basket 16 are made of a suitable material that is suitably biocompatible and has thermo-mechanical shape memory and/or superelastic properties. According to one embodiment of the invention, the filaments are made of a metallic material. For example, the metallic material can be selected from a NiTi based alloy (e.g., Nitinol), stainless steel and other materials possessing good shape memory, elastic or superelastic characteristics. According to another embodiment of the invention, the filaments are made of non-metallic material, e.g. Capron, Nylon, etc.
According to a still further embodiment of the invention, the filaments of the basket are covered by an insulating layer. The insulating layer can, for example, be made of Teflon. The advantage of Teflon is its thermal resistance and low coefficient of mechanical friction, which leads to an additional reduction of traumatism.
Preferably, but not mandatory, the filaments are radiopaque, so as to permit them to be visualized by a fluoroscope with respect to the object to be retracted. Thus, according to one example, in order to provide radiopacity, the metallic material from which the filaments are made can include a material which provides radiopacity, e.g., a noble metal, such as gold, tantalum, platinum, etc. Likewise, the metallic material can be alloyed with one or more metals selected from Pd, W, Nb, Co, Cu, etc.
According to another example, the filaments are made of a core tube (cannular strand) containing an axially disposed radiopaque wire.
According to yet another example, the filaments can have radiopaque parts of a predetermined length. These radiopaque parts can form the distal portion 162 of the basket or at least a part of the distal portion.
Radiopacity can also be improved through coating processes such as sputtering or plating a radiopaque material onto the filaments, or the basket fabricated from these filaments, thereby to provide a radiopaque coating layer on the filaments.
Likewise, radiopacity can yet be improved by using radiopaque markers (not shown) which can be attached to or placed around the filaments forming the basket. In this manner, materials which have higher radiopacity than the basket structure itself, such as gold, tantalum or platinum, can be utilized as markers and be strategically placed along the body of the basket to increase the visualization of the basket. For example, the retrieval basket can comprise one or more radiopaque markers (not shown) attached to or placed around the filaments forming one or more filament loops 165 in the distal portion 162. For example, the radiopaque marker can be a ferrule put on the filament.
According to another embodiment of the invention, the filaments can be multi-wire strands. In such a case, in order to improve radiopacity, the multi-wire strands can include a central core wire and at least one another wire twisted about said central core wire which is made of a material having a level of radiopacity greater than the level of radiopacity of said central core wire. Examples of such a material include, but are not limited to, Pt, Au, Pd, Ta, etc.
According to one embodiment of the invention, each filament originates from a certain point at the basket proximal end 163, and extends towards the basket distal end 164 to form a loop. After forming the loop, the filament returns to the original point at the basket proximal end 163 to form one of the basket filament strands 166 in the proximal portion 161.
According to another embodiment of the invention, each filament extends from a certain point at the basket proximal end 163, and then, after enwinding with other filaments, arrives at another point at the basket proximal end 163, where the filaments meet with one or more other filaments. In this case, each filament strand 166 is formed by two or more different filaments that correspond to the sides of adjacent loops.
Description of various embodiments of the retrieval basket 16 of the medical device 10 will be described more fully below in connection with Figs. 3 – 5.
At the basket proximal end 163, the filament strands 166 are connected to the catheter-like tubular member 11 along the surface circumference of the tubular member distal end 12. A joining portion 167 may, for example, be a hollowed-out portion at the distal end of the tubular member 11 (as shown in Fig. 1). The axial dimension of hollowed-out portion can, for example, be in the range of about 15mm – 25mm. Alternatively, joining portion 167 can include a separate ferrule, such as a hollow cannula made of metal, e.g., stainless steel, etc.
The filaments from the basket strands 166 can be trimmed and coupled to the tubular member 11 along the surface circumference of the tubular member distal end 12 by one or more connecting means.
In one embodiment, the filament strands 166 of the retrieval basket can be directly connected to the tubular member 11. For instance, the filament strands 166 may be soldered, brazed or welded to the tubular member 11 at the joining portion 167. Likewise, a medically-acceptable adhesive may also be used to secure or join the filament strands 166 to the tubular member 11. An example of the adhesive includes, but is not limited to, LOCTITE® 4011 cyanoacrylate.
In order to increase mechanical strength, a thin tube 168 can be put on the filament strands 166 at the joining portion 167, as shown in Fig. 1. The tube 168 can be made of a thermo-shrinkable material. An example of the material suitable for the tube 168 includes but is not limited to Polytetrafluoroethylene (PTFE). The wall thickness of the tube 168 can, for example, be in the range of about 0.005mm – 0.01mm.
In another embodiment, a separate ferrule (not shown), may be used to connect the filament strands 166 or loops to the tubular member 11. The ferrule can be joined to the tubular member 11 and to the filament strands, preferably, by soldering, welding or brazing, although other known techniques, such as gluing, may also be used. For instance, if soldering is used, the end of the tubular member 11 is first etched, preferably with acid, followed by neutralizing and drying. Flux is then applied to both the tubular member 11 and the cannula, the two are soldered together, and excess solder is removed. Afterwards, the parts should be neutralized, dried and cleaned.
At the distal portion 162 of the basket, the filament loops 165 are overlapped and/or interlaced with each other so as to form open spaces between the filaments. The filament loops 165 define a net that has a distal opening 169 at the basket distal end 164, and a plurality of side openings 170 along the basket's structure. Note that the term “overlapped” herein is assigned to such arrangement of the filaments forming the filament loops, in which one element crosses other filaments, i.e., one of the filaments always being over or under the other filaments. The term “interlaced” herein is assigned to the situation when at least one filament interweaves with the other filaments, i.e., one of the filaments passes first above the crossed filament and then passes under the next crossed filament.
The distal opening 169 in the basket has such dimension so as to permit the lithotripsy probe 14 to be protruded through the distal opening 169 in order to bring the probe 14 into proximity with the object (not shown), when it is located in front of the basket. This provision permits to apply destruction energy to relatively large concretions. A large concretion can only be located in front of the basket, because the concretion cannot pass through the side openings 170 to be captured and entrapped within the basket, owing to the big size of the concretion. After the breaking of such a concretion into parts, the smaller pieces can be captured and retained in the basket for their further destruction inside the basket, or removal from the patient's body.
The method for removing concretions within ducts and cavities of a living body according to the present invention involves the following steps. According to one embodiment of the present invention, an endoscope (not shown) steerable by an operator is first inserted into the patients body tract and/or cavity into proximity with the concretion by known means, for example, through a surgical incision, through the urethra or through any other duct. The endoscope can, for example, be a cystoscope, a urethroscope or another suitable device that includes both a light source and fiber optics so that the stone can be seen when the device is properly inserted. Thereafter, the medical device of the present invention is inserted through the endoscope into the body.
When a concretion is relatively large, and the basket cannot pass beyond the concretion for its capturing or it cannot pass through the side openings in the structure of the basket, the concretion should first be shattered into pieces by using the lithotripsy probe 14.
Figs. 2A and 2B illustrate two examples of operation of the medical device shown in Fig. 1 when an object (concretion) 21 is arranged in front of the retrieval basket 16. It should be understood that when the object is arranged in front of the retrieval basket 16, in operation, the basket can be either open or closed. Specifically, when the basket is fully open, as shown in Fig. 2A, the opened basket 16 forms a cage to allow the pieces of the shattered object to enter into the side openings 170 left between the filaments. In order to shatter the object, the lithotripsy probe 14 can be protruded through the distal opening 169 for bringing the impact tip 141 into proximity with the object 21. Depending on the lithotripsy technique, the end of the impact tip 141 of the lithotripsy probe 14 can be close to, or in direct contact with a surface of the object 21.
Likewise, the basket 16 may only be partially opened or even be completely retracted inside the sheath 15. As shown in Fig. 2B, the lithotripsy probe 14 can be protruded through the distal opening 169 and brought into contact with the object, whereas the basket is located within the sheath 15.
After bringing the lithotripsy probe 14 into proximity with the object 21, the probe is energized for applying destruction energy to the object. After the shattering of the object into pieces, the basket can be advanced for opening and entrapping the pieces having smaller dimensions than the dimensions of the original object 21.
The retrieval basket 16 and the sheath 15 can move relative to each other to open and close the basket 16. Depending on the manipulation of the tubular member 11, the basket 16 may either retract inside the sheath 15, to allow penetration of the sheath 15 via a passage, or protract from the sheath 15. In the protracted position, the basket 16 is open, due to the elasticity of the filament material, and forms a cage to thus allow entry of an object (e.g., concretion) inside the basket through the open spaces left between its adjacent filaments. Further retraction of the basket 16 inside the sheath 15 results in the cage collapsing and entrapping the object in the basket.
When the object is relatively small, distal end portion of the basket is moved slightly beyond the stone to be removed. Then, the basket is opened, and the instrument is manipulated to capture the concretion in the basket. Once the concretion has been captured, the basket is closed around the concretion to retain the concretion in the basket.
Fig. 2C illustrates an example of operation of the medical device shown in Fig. 1 when an object (concretion) 21 is entrapped inside the retrieval basket 16. Depending on the lithotripsy technique, the end of the impact tip 141 of the lithotripsy probe can be brought to be close to, or in direct contact with a surface of the object 21. Then, the lithotripsy probe 14 is energized for breaking the concretion into much smaller fragments. Large fragments of the concretion are retained in the basket, while, at least in the case of kidney stones, smaller fragments may escape from the basket, and subsequently pass out of the body with the urine. Finally, removal of the sheath 15 together with the endoscope will enable the whole device to be removed from the body organ together with the object immobilized within the basket.
The entire medical device of the present invention may be constructed in a number of sizes and lengths, so as to be able to pass through the various sizes of ducts and cavities of a living body and the various dimensions of working channels of commercial cystoscopes, ureteroscopes or other endoscopes.
Generally speaking, the overall axial length of the device of the present invention can, for example, be in the range of from about 1 m to about 3 m. Shorter or longer overall lengths are also contemplated as may be required to effect a particular procedure.
It should be understood that the overall diameter of the cross-section of the medical device of the present invention should in use be small enough to accommodate any working channel through which the device of the invention is used. Specifically, the overall diameter of the cross-section of the lithotripsy probe 14 depicted in Figs. 1, 2A and 2B can, for example, be from about 0.2 mm to about 2 mm. It will be understood that the inner diameter of the tubular member 11 should be great enough to provide axial movement of the lithotripsy probe 14 within the lumen 13. The outer diameter of the tubular member 11 can, for example, be in the range of from about 0.3 to about 2.5 mm, whereas the outer diameter of the tubular member 11 at the joining portion 166, where the filament strands are attached to the tubular member 11, can be in the range of from about 0.4 mm to about 2.8 mm.
The inner diameter of the dilator sheath 15 can, for example, be in the range of from about 0.4 to about 3 mm, whereas the outer diameter of the dilator sheath 15, can be in the range of from about 0.44 to about 3.5 mm.
For example, when the outer cross-sectional diameter of the dilator sheath 15 is 1.00 mm (3Fr) or smaller the entire medical device of the present invention may be used together with the commercial ureteroscope DUR-8 (available from ACMI) that has dimensions of the working channels of 1.2 mm (3.6 Fr).
Referring now to Figs. 3 – 5, various configurations of the retrieval basket 16 will be described hereinbelow.
Fig. 3 shows a plan view of a distal portion of a medical device of the present invention having a retrieval basket 30 for entrapping and retaining a foreign object (not shown) in a deployed position, according to one embodiment of the present invention. The structure of the retrieval basket 30 comprises a proximal portion 31 and a distal portion 32. The structure is constituted by a plurality of filaments that originate from a basket proximal end 33 of the proximal portion 31, then extend towards the distal portion 32, and finally return to the end 33, thereby forming a plurality of filament loops 34 in the distal portion 32, and a plurality of filament strands 35 in the proximal portion 31. In accordance with the embodiment shown in Fig. 3, each filament strand 35 is formed by twisting the same filament that extends from the end 33 towards the distal portion and then returns to the end after forming the corresponding wire loop 34.
In the distal portion 32, each side of each wire loop 34 is directly connected to a side of an adjacent loop. According to one embodiment of the invention, the connection of the sides of the loops 34 in the distal portion 32 is achieved by twisting each pair of the filaments forming the corresponding sides of the neighboring loops by one or more turns. Likewise, the connection of the sides of the neighboring loops can also be achieved by soldering, brazing, gluing, etc. Connecting the sides of the loops provides structural rigidity and dilatation ability to the basket.
The filament loops 34 define a net that has a distal opening 37 at a basket distal end 38, where the loops 34 are not bound, and a plurality of side openings 39 along the basket's structure. The distal opening 37 in the basket has such dimension so that to permit the lithotripsy probe 14 to be protruded through the distal opening 37, when desired. In turn, the side openings 39 are configured for enabling the relatively small concretions to pass through to be captured and entrapped within the basket.
Referring to Fig. 4, there is shown a plan view of a distal portion of a medical device of the present invention having a retrieval basket 40 for entrapping and retaining a foreign object (not shown) in a deployed position, according to another embodiment of the present invention. The structure of the retrieval basket 40 comprises a proximal portion 41 and a distal portion 42. The structure is constituted by a plurality of filaments that originate from a basket proximal end 431 and are bound together at the proximal portion 41 to form a plurality strands 44 (four strands are shown in Fig. 4). In the distal portion 42 the strands 44 ramify at branching points 45 into sub-strands 46, which in turn ramify at branching points 47. After ramification of the strands 44 and the sub-strands 46, the filaments form a plurality of filament loops 48 (four filament loops are shown in Fig. 4). Sides of each loop 48 are connected to the sides of two adjacent neighboring loops. The places of connections are indicated by a reference numeral 49. The connection of the sides of the loops 48 can, for example, be achieved by twisting the filaments forming the corresponding sides of the neighboring loops by one or more turns. Likewise, the connection of the sides of the neighboring loops can also be achieved by soldering, brazing, gluing, etc.
The filament loops 48 define a net that has a distal opening 481 at a basket distal end 432, where the loops 34 are not bound, and a plurality of side openings 482 along the basket's structure. The distal opening 481 in the basket has such dimension so as to permit the lithotripsy probe (not shown in Fig. 4) to be protruded through the distal opening 481, when desired. In turn, the side openings 482 are configured for enabling the relatively small concretions to pass through to be captured and entrapped within the basket.
Referring to Fig. 5, there is shown a plan view of a distal portion of a medical device of the present invention having a retrieval basket 50 for entrapping and retaining a foreign object (not shown) in a deployed position, according to a yet another embodiment of the present invention. According to this embodiment, the structure of the retrieval basket 50 has a petal shape and comprises a proximal portion 51 and a distal portion 52. The structure is formed by a plurality of filaments that extend from an end 53 of the proximal portion 51 towards the distal portion 52 and then return to the end 53 to form a plurality of filament loops 54. In the proximal portion 51, each side 55 of each loop 54 is directly connected to a side 55 of an adjacent loop 54 at one or more points between the end 53 and a distal connection point 56. Specifically, each side 55 of each loop 54 is connected to a side of an adjacent loop at continues length sections, thereby forming a plurality of strands 57 at the basket proximal portion. This feature provides structural rigidity and dilatation ability to the basket. However, the loops 54 are not interconnected in the distal portion 52. Specifically, the loops 54 deploy radially outward and away from each other in the distal portion 52 when the basket is deployed outside the dilator sheath 15.
According to one embodiment of the invention, the filament loops 54 are generally flat and planar. According to another embodiment of the invention, each side 55 of the filament loops is slightly bent or arcuate into an arc (C-shaped configuration). Such a configuration can enhance the ability to slip the loops over the foreign object and grasp it. According to still another embodiment of the invention, each side 55 of the filament loops 54 is slightly undulated into a somewhat S-shaped configuration. Such a configuration can facilitate retraction of the basket into the sheath 15.
According to one embodiment of the present invention, the connection of the sides 55 of the loops 54 in the proximal portion 51 is achieved by twisting each pair of the corresponding sides 55 by one or more turns and forming twisted parts of the strands 57. Likewise, the connection of the sides of the neighboring loops can also be achieved by soldering, brazing, gluing, etc.
From the foregoing description it should be appreciated that retrieval baskets of the medical device constructed in accordance with the present invention, can comprise a variety of user desired shapes, number of loops, shape of the loops, types of connection of the loops in the proximal portion and types of connection of the loops to a manipulation rod. Thus, although the exemplary baskets 30, 40 and 50 having four filament loops 34, 48 and 54 are illustrated in Figs. 3–5, respectively, showing the baskets in accordance with different embodiments, the invention is not limited by such basket structures. Generally, any desired number of the loops equal to or greater than two may be fabricated, mutatis mutandis.
Turning now to Figs. 6A, 6B, 7, 8 and 9, various types of the lithotripsy probe 14 suitable for the purpose of the present invention will be described hereinbelow.
According to one embodiment of the invention, the lithotripsy probe 14 provides energy of a shock-wave of electro-hydraulic lithotripsy (EHL). Fig. 6A shows schematically the impact tip 141 of the lithotripsy probe 14 used in EHL, and location of a concretion 61 juxtaposed against the impact tip 141. The impact tip 141 includes a high voltage central electrode 62, which is surrounded by an annular electrode 63, formed as a tubular member concentric with the central electrode 62. The object 61, e.g., a calculus, is distant from both electrodes 62 and 63, and due to a gap 64 none of the electrodes is in direct electrical contact with the object 61. The energy unit 143 includes an EHL pulse generator (not shown) coupled to the central electrode 62 and the annular electrode 63 via the control cable 142.
In operation, a series of high voltage pulses of sufficiently short duration, to avoid harm to human tissues, is generated in an electrical pulse generator (not shown). Pulses therefrom are directed to the impact tip 141 to produce a spark discharge between the electrodes 62 and 63. Shock waves 65 produced by the spark discharge propagate towards the concretion 61 through the gap 64 and break it into peaces. It should be noted that no discharge channel is formed within the calculus itself.
Various EHL pulse generators are commercially available. Examples of commercially available EHL generators include, but are not limited to, Karl Storz 27080 system, Model 2137 from Richard Wolf, GmbH, etc.
According to another embodiment of the invention, the lithotripsy probe 14 is based on electro-impulse destruction. The lithotripsy probe 14 used in electro-impulse destruction can be similar to the lithotripsy probe used in EHL, which is shown in Fig. 6A. The difference between electro-impulse destruction and the EHL destruction is in the mutual arrangement of the probe and object and in the slope of the voltage pulse utilized for spark discharge. Fig. 6B shows schematically the location of the object 61, with respect to the impact tip 141 at electro-impulse destruction. In this case, at least one of the electrodes 62 and 63 (or both electrodes 62 and 63) is (are) placed directly on the object surface to locate the spark discharge within the bulk of the object 61. Due to this provision the high voltage spark discharge produces spark channel within the object itself. Due to release of impulse energy within the spark channel the pressure within the channel dramatically increases, diameter of the channel enlarges causing tensile stresses within the object. The object can be efficiently fragmented and destroyed due to these tensile stresses in combination with hydraulic pressure of the surrounding liquid medium and collisions with the fragments of the object.
It should be understood that the lithotripsy probe 14 is not bound by any specific configuration of the electrodes 62 and 63. For example, the annular electrode 63 can be combined with miniaturized grasping forceps configured for grasping the foreign body anywhere along its length as described in U.S. Pat. No. 7,087,061 to Chernenko, et al., the disclosure of which is incorporated hereby by reference into this description.
In practice, for calculi appearing in a living body that have dimensions in the range of from about 3 mm to several centimeters, the electrical pulses supplied to electrodes can be defined by the following parameters: rise time of the pulse front is less than about 100 nanoseconds, preferably less than about 40 nanoseconds; duration of the pulse is less than about 5 microseconds, preferably 0.5–0.3 microseconds, pulse energy is in the range of about 0.1–1 Joule, impulse amplitude is in the range of about 5–30 kV. The preferred configuration of the pulses is rectangular.
Referring to Fig. 7, according to a further embodiment of the invention, the lithotripsy probe 14 provides energy of ultrasonic wave for breaking concretions. In this case, the lithotripsy probe 14 includes an ultrasonic-vibration generation source 71 mounted either in the energy unit 143 or in the impact tip 141, and adapted for irrigation fluid near the impact tip 141. When the ultrasonic-vibration generation source is mounted in the energy unit 143, the control cable 142 can include an ultrasonic transmission line for transferring the ultrasonic energy to the tip 141. In operation, the tip 141 is juxtaposed against the concretion 73. At the tip, an ultrasonic wave formed by the probe 14 is directed towards the concretion 73.
It should be noted that the present invention is not limited to any specific implementation of the ultrasonic probe. Examples of ultrasonic probes suitable for the purpose of the present invention are described in U.S. Pat. Nos. 4,046,150 to Schwartz, et al.; 5,403,324 to Ciervo, et al.; and 6,613,056 to Brumbach, et al., the disclosure of which is incorporated hereby by reference into this description.
Referring to Fig. 8, according to yet another embodiment of the invention, the lithotripsy probe 14 provides mechanical energy for breaking concretions. In this case, the control cable 142 of the lithotripsy probe 14 includes or represents a relatively stiff rod with the tip of the rod placed against the concretion 81. The rod is adapted for reciprocal movement between axially advanced and retracted positions for breaking the concretion into smaller pieces for easier removal from the body (not shown) in the retrieval basket. When desired, the energy unit 143 can include means (not shown) for moving the rod back and forth to impact the tip upon the concretion with a hammering action. Such means are known per se (see, for example, U.S. Pat. No. 5,176,688 to Narayan, et al., the disclosure of which is incorporated hereby by reference into this description), and therefore will not be expounded hereinbelow. When desired, the end of the tip 141 can include one or more cutting teeth 82 for facilitation of the shattering function.
Referring to Fig. 9, according to yet another embodiment of the invention, the lithotripsy probe 14 provides energy of laser light for breaking a concretion 91. In this case, the lithotripsy probe 14 includes a laser light source 92 mounted in the energy unit 143. The lithotripsy probe 14 includes also a laser light guide mounted in or represented by the control cable 142. The laser light source 92 operates at a predetermined frequency that is preferably selected to match a peak absorption value of either the concretion or liquid in the vicinity of the concretion. The laser light emitted from the tip 141 and directed towards the concretion 91 can be absorbed by either the concretion or the liquid, thereby providing micro-explosions leading to concretion destruction. Examples of laser light probes suitable for the purpose of the present invention are described in U.S. Pat. Nos. 4,887,600 to Watson, et al.; 5,059,200 to Tulip; 5,041,121 to Wondrazek, et al., the disclosure of which is incorporated hereby by reference into this description.
As such, those skilled in the art to which the present invention pertains, can appreciate that while the present invention has been described in terms of preferred embodiments, the concept upon which this disclosure is based may readily be utilized as a basis for the designing of other structures and processes for carrying out the several purposes of the present invention.
It should be understood that when desired the lithotripsy probe suitable for the purpose of the present invention can be a combination of any two or more lithotripsy techniques described above.
It should be understood that the medical device of the present invention is not limited to a medical treatment of a human body. It can be successfully employed for medical treatments of animals as well.
Moreover, the present invention is not limited to fabrication of medical devices, thus the apparatus of the invention can be used to shatter and extract any type of article from a wide range of inaccessible locations such as inside a pipe or tube (for example, the waste outlet of a domestic sink) or inside a chamber within a large piece of machinery which would be difficult to dismantle.
Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
In the method claims that follow, alphabetic characters used to designate claim steps are provided for convenience only and do not imply any particular order of performing the steps.
It is important, therefore, that the scope of the invention is not construed as being limited by the illustrative embodiments set forth herein. Other variations are possible within the scope of the present invention as defined in the appended claims. Other combinations and sub-combinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to different combinations or directed to the same combinations, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the present description.

CLAIMS:
1. A medical device for breaking a concretion in a body it into smaller pieces and removing the pieces from the body, comprising:
a dilator sheath adapted to penetrate into a passage of the body to reach the location where the concretion to be shattered into smaller pieces is located;
a lithotripsy probe configured for shattering the concretion into smaller pieces;
a tubular member mounted within the dilator sheath and having a tubular member proximal end, a tubular member distal end and an axially extending inner lumen provided within the tubular member to permit the lithotripsy probe to be inserted into the tubular member from the proximal end; and
a retrieval basket coupled to said tubular member at the tubular member distal end, and configured for entrapping and retaining the concretion and the smaller pieces for their extraction from the body, said retrieval basket comprising a structure having a basket proximal portion and a basket distal portion, and constituted by a plurality of filaments extending from a basket proximal end towards a basket distal end, and then returning to the proximal end after forming a plurality of filament loops in the basket distal portion, and a plurality of filament strands at the basket proximal portion.
2. The medical device of claim 1, wherein said dilator sheath is made of a flexible strong material selected from a plastic material and a composite material.
3. The medical device of claim 1, wherein said tubular member distal end has a hollowed-out portion for connecting said tubular member to the filament strands of the retrieval basket along the surface circumference of said hollowed-out portion.
4. The medical device of claim 4, comprising a tube put on the filament strands at said hollowed-out portion.
5. The medical device of claim 5, wherein said tube is made of a thermo-shrinkable material.
6. The medical device of claim 1, wherein said tubular member is a deflectable tube made from a material selected from polyimide, nylon, and polyester.
7. The medical device of claim 1, wherein said lithotripsy probe is selected from an electro-hydraulic lithotripsy probe, an electro-impulse lithotripsy probe, an ultrasonic wave lithotripsy probe, a mechanic lithotripsy probe, and a laser light lithotripsy probe.
8. The medical device of claim 1, wherein sides of the filament loops are connected to the sides of adjacent loops at the distal portion of the basket to form a net defining a distal opening at the basket distal end and a plurality of side openings along the structure of the basket.
9. The medical device of claim 8, wherein said distal opening in the basket has such dimension so that to permit the lithotripsy probe to be protruded through said distal opening.
10. The medical device of claim 8, wherein the connection of the loops is achieved by twisting the filaments forming the corresponding sides of the adjacent loops by at least one turn.
11. The medical device of claim 1, wherein at the basket proximal end, the filament strands are connected to said tubular member along the surface circumference of said tubular member distal end.
12. The medical device of claim 1, wherein the filaments forming the structure of the basket are single-core wires.
13. The medical device of claim 1, wherein the filaments forming the structure of the basket are made of a metallic material having super elastic and thermo-mechanical shape memory characteristics.
14. The medical device of claim 13, wherein the metallic material is selected from NiTi based alloys and stainless steel.
15. The medical device of claim 13 wherein the metallic material includes a radiopaque material.
16. The medical device of claim 15 wherein the radiopaque material is at least one of the following metals: Pt, Au, Ag, Pd, W, Nb, Co, and Cu.
17. The medical device of claim 1 wherein said filaments are made of a core tube containing an axially disposed radiopaque wire.
18. The medical device of claim 1 comprising at least one radiopaque marker attached to at least one loop in said distal portion.
19. The medical device of claim 1, wherein the filaments forming the structure of the basket are multiwire strands.
20. The medical device of claim 1 wherein said multiwire strands include a central core wire and at least one another wire twisted about said central core wire, said another wire being made of a material having a level of radiopacity greater than the level of radiopacity of said central core wire.
21. The medical device of claim 1 wherein the filaments are made of non-metallic material.
22. The medical device of claim 1 wherein the non-metallic material comprises one of Capron and Nylon.
23. A method for breaking a concretion in a body it into smaller pieces and removing the pieces from the body by using a medical device comprising:
a dilator sheath adapted to penetrate into a passage of the body to reach the location where the concretion to be shattered into smaller pieces is located;
a lithotripsy probe configured for shattering the concretion into smaller pieces;
a tubular member mounted within the dilator sheath and having a proximal member end, a distal member end and an axially extending inner lumen provided within the tubular member to permit the lithotripsy probe to be inserted into the tubular member from the proximal end; and
a retrieval basket coupled to said tubular member at the tubular member distal end, and configured for entrapping and retaining the concretion and the smaller pieces for their extraction from the body, said retrieval basket comprising a structure having a basket proximal portion and a basket distal portion, and constituted by a plurality of filaments extending from a basket proximal end towards a basket distal end, and then returning to the proximal end after forming a plurality of filament loops in the basket distal portion, and a plurality of filament strands at the basket proximal portion;
the method comprising:
(a) inserting said medical device in a basket closed position through an endoscope into said body into proximity with the concretion;
(b) manipulating the tubular member and the dilator sheath for opening the retrieval basket, entrapping the concretion in the retrieval basket, and closing the basket around the concretion;
(c) manipulating said lithotripsy probe for protruding thereof from the lumen in the tubular member and bringing thereof into proximity with the concretion entrapped in the retrieval basket;
(d) energizing said lithotripsy probe to cause the concretion to break into smaller pieces; and
(e) removing the medical device from the body together with at least one piece of the concretion immobilized within the basket.
24. A method for breaking a concretion in a body it into smaller pieces and removing the pieces from the body by using a medical device comprising:
a dilator sheath adapted to penetrate into a passage of the body to reach the location where the concretion to be shattered into smaller pieces is located;
a lithotripsy probe configured for shattering the concretion into smaller pieces;
a tubular member mounted within the dilator sheath and having a proximal member end, a distal member end and an axially extending inner lumen provided within the tubular member to permit the lithotripsy probe to be inserted into the tubular member from the proximal end; and
a retrieval basket coupled to said tubular member at the tubular member distal end, and configured for entrapping and retaining the concretion and the smaller pieces for their extraction from the body, said retrieval basket comprising a structure having a basket proximal portion and a basket distal portion, and constituted by a plurality of filaments extending from a basket proximal end towards a basket distal end, and then returning to the proximal end after forming a plurality of filament loops in the basket distal portion, and a plurality of filament strands at the basket proximal portion;
wherein sides of the filament loops are connected to the sides of adjacent loops at the distal portion of the basket to form a net defining a distal opening at the basket distal end and a plurality of side openings along the structure of the basket;
the method comprising:
(a) inserting said medical device in a basket closed position through an endoscope into said body into proximity with the concretion;
(b) manipulating said lithotripsy probe for protruding thereof from the lumen in the tubular member and the distal opening of the basket to bring said lithotripsy probe into proximity with the concretion entrapped in the retrieval basket;
(c) energizing said lithotripsy probe to cause the concretion to break into smaller pieces;
(d) manipulating the tubular member and the dilator sheath for opening the retrieval basket, entrapping at least one piece of the concretion in the retrieval basket, and closing the basket around the piece; and
(e) removing the medical device from the body together with said at least one piece of the concretion immobilized within the basket.

ABSTRACT
A medical device and method for breaking a concretion in a body into smaller pieces and removing the pieces from the body are described. The device comprises a dilator sheath, a lithotripsy probe, a tubular member, and a retrieval basket. The dilator sheath adapted to penetrate into a passage of the body to reach the location where the concretion is located. The lithotripsy probe is configured for shattering the concretion into smaller pieces. The tubular member is mounted within the dilator sheath adapted to permit the lithotripsy probe to be inserted into the tubular member. The retrieval basket is coupled to the tubular member, and configured for entrapping the concretion and the smaller pieces for their extraction from the body. The retrieval basket comprises a structure constituted by a plurality of filaments extending from a basket proximal end towards a basket distal end, and then returning to the proximal end after forming a plurality of filament loops in the basket distal portion, and a plurality of filament strands at the basket proximal portion.

Образец перевода (Translation sample):
Russian translation

Устройство и метод для разрушения и удаления конкрементов из каналов и полостей тела

ОБЛАСТЬ ТЕХНИКИ
Данное изобретение относится к области устройств и методов для разрушения посторонних конкрементов и извлечения их частей из полых тел, и в частности, к медицинским инструментам для разрушения и удаления твердых каменных образований из каналов и полостей живого тела.

УРОВЕНЬ ТЕХНИКИ
В клинической практике используют несколько методов для разрушения посторонних конкрементов, появляющихся в желчной и/или мочевой системе человеческого тела, с целью последуюшего удаления этих частей из тела. Термин "конкремент", как он используется здесь, относится к твердым каменным образованиям из уратов, оксалатов и фосфатов, например, таких как жёлчные камни, почечные камни, цистиновые камни и другие каменные образования, засевшие в каналах и полостях живого тела. При всем различии применяемых процедур, большинство из них включает расширение, анестезию и смазку мочевого или желчного тракта, а затем попытки захватить каменное образование для его разрушения и извлечения наружу.
Например, широко используется ударно-волновая литотрипсия изнутри и извне тела, при которой ударные волны с высокой энергией применяются, чтобы разрушать и размельчать каменные образования. При внешней ударно-волновой литотрипсии энергия в виде ударных волн, необходимая для разрушения камня, передается к камню от внешнего источника через ткани тела. С другой стороны, при внутренней ударно-волновой литотрипсии используется зонд, который подается с помощью эндоскопа и помещается рядом с каменным образованием. Ударные волны, требуемые для разрушения, передаются камню через зонд, и весь процесс разрушения может быть наблюдаем через эндоскоп.
Известна технология ультразвуковой литотрипсии, которая использует ультразвуковой зонд, направляющий на конкремент высокочастотную ультразвуковую энергию. При этой технологии существенным для эффективности ультразвуковой литотрипсии является непосредственный контакт наконечника зонда и камня.
Лазеры также известны в качестве альтернативного источника энергии для литотрипсии, в особенности для разрушения почечных и желчных камней. Разработаны различные типы лазерных зондов для литотрипсии, с широким диапазоном лазерных источников, включая пульсирующий лазер на красителе, александритный лазер, а также неодимовый, гольмиевый и другие лазеры.
Электрогидравлическая литотрипсия (EHL) является формой терапии, применяемой для разрушения мочевых камней как в человеческом мочевом пузыре, так и внутри отдельных мочеточников. EHL чрезвычайно эффективна для того, чтобы раскрошить крупные мочевые камни на фрагменты, достаточно малые для их извлечения наружу с помощью корзинки, или для их вывода естественным путем. Когда для разрушения камня решают применить EHL, то зонд EHL помещают возле камня. Затем посредством электрического разряда производят ударную волну, которая воздействует на поверхность камня и вызывает мелкие трещины. Когда накапливается достаточно большое количество трещин, камень раскалывается на мелкие куски. Отдельные куски могут быть затем подвергнуты дополнительному воздействию поодиночке, либо далее извлечены с помощью экстракционной корзинки.
В данной области известна также технология литотрипсии с прнименением электроимпульсного разрушения материалов (см., например, Патент США № 7 087 061, Chernenko и другие). В отличие от электрогидравлического разрушения, использующего электроды, которые не находятся в непосредственном контакте с объектом, при электроимпульсном разрушении используется зонд с электродами, которые непосредственно контактируют с поверхностью объекта. Эта технология основана на эффекте Воробьева, при котором наблюдаются определенные особенности разряда, когда твердый диэлектрик в контакте с двумя стержневыми электродами помещен в жидкую диэлектрическую среду и к электродам применен импульс напряжения с увеличивающейся крутизной фронта. Согласно этому эффекту, когда крутизна фронта импульса является незначительной (например, когда время роста импульса больше чем примерно 0,5 микросекунды), то разряд распространяется в окружающей жидкости по твердой диэлектрической поверхности, не проникая в твердое тело. С другой стороны, когда крутизна фронта импульса достаточно велика, импульс проникает в твердое тело и производит его разрушение с расщеплением поверхностных фрагментов (см., например, G.A. Masyats, Technical Physics Letters, Vol. 31, No. 12, 2005, pp. 1061–1064. Перевод с русского языка из «Писем в журнал технической физики», т. 31, № 24, 2005, стр. 51–59).
Проблема, связанная с зондами для литотрипсии, состоит в том, что каменные образования не захватываются в течение их обработки. При этом в ответ на усилия по разрушению камня он может, например, переместиться вдоль мочеточника к почке. Аналогично, камень может также продвинуться в сторону катетера и вклиниться между стенкой мочеточника и катетером.
Известны медицинские устройства, сочетающие зонд для литотрипсии, используемый для разрушения каменного образования, с экстракционной складной проволочной корзинкой, которая обеспечивает надежное удерживание мочевого или желчного камня, в то время как со стороны зонда прикладываются усилия для разрушения камня. Одно из преимуществ таких комбинированных устройств для литотрипсии заключается в том, что оператору, использующему такое устройство, не нужно заменять зонд для литотрипсии на экстракционную корзинку посреди процедуры, в пределах весьма ограниченного пространства мочевого или желчного тракта.
Например, Патент США № 5 176 688, Narayan и др. описывает экстрактор для камней и метод, при котором камень захватывается экстракционной корзинкой на дистальном конце продолговатого трубчатого элемента и разрушается на части, в то время как он удерживается в корзинке. Камень разбивается штоком, который имеет возвратно-поступательное движение, Шток проходит через трубчатый элемент в корзинку и подается к камню с помощью пружины, обеспечивая эффективное ударное воздействие без повреждения окружающей ткани. Камень удаляется из тела путем извлечения из тела трубчатого элемента вместе с фрагментами камня в корзинке.
Патент США № 5 397 320, Mitchell и др. описывает лапароскопическое хирургическое устройство, которое включает продолговатый стержень, имеющий множество электропроводящих гибких ребер, которые связаны с дистальным концом стержня и друг с другом, так что образуется клетка или корзинка. После помещения органического тела в клетку ребра электрически заряжаются. Органическое тело прижимается к ребрам для рассечения во время одноразовой операции прижигания.
Патент США № 6 319 261, Bowers описывает комбинированное устройство литотрипсии, применяемое для разрушения каменных образований типа мочевых камней в человеческом мочевом пузыре, в отдельных мочеточниках, желчном тракте или других местоположениях в человеческом теле. В частности, устройство включает электрогидравлический зонд в сочетании с корзинкой, которая состоит из множества электропроводящих проволок, которые действуют как электрические проводники, и все вместе работают как захватывающее устройство.

РЕЗЮМЕ ИЗОБРЕТЕНИЯ
Существует потребность в новом медицинском устройстве, сочетающем функции литотрипсии и извлечения, и могущем быть безопасно введенным в ограниченное пространство в отдельном мочеточнике, мочевом пузыре или желчном тракте, зафиксировать конкремент, раскрошить его на более мелкие фрагменты и извлечь эти фрагменты из каналов тела.
Аналогичным образом целесообразно иметь метод для разрушения и удаления конкремента с использованием устройства согласно данному изобретению.
Настоящее изобретение удовлетворяет вышеупомянутой потребности, предоставляя новое медицинское устройство для улавливания конкрементов в каналах и полостях живого тела, расчленения их на более мелкие фрагменты и удаления фрагментов из тела. Медицинское устройство включает оболочку для расширения, зонд для литотрипсии, трубчатый элемент, установленный внутри оболочки для расширения и несущий в себе зонд для литотрипсии, и экстракционную корзинку, присоединенную к трубчатому элементу.
Оболочка для расширения устроена таким образом, чтобы проникнуть в проход в теле и достичь местоположения, где находится конкремент, который должен быть расчленен на более мелкие фрагменты. Для расчленения конкремента на более мелкие фрагменты служит зонд для литотрипсии. Трубчатый элемент имеет проксимальный конец и внутренний просвет, проходящий аксиально внутри трубчатого элемента, чтобы обеспечить возможность вставления зонда для литотрипсии в трубчатый элемент с проксимального конца. Экстракционная корзинка выполнена таким образом, чтобы захватить и удержать конкремент и более мелкие фрагменты для их извлечения из тела. Следует отметить, что термины "проксимальный" и "дистальный" используются по отношению к оператору медицинского устройства.
Экстракционная корзинка включает конструкцию, которая имеет проксимальный участок и дистальный участок. Эта конструкция состоит из множества нитей, которые выступают из конца проксимального участка корзинки по направлению к дистальному участку корзинки и затем возвращаются обратно к этому концу, образуя множество петель нитей на дистальном участке корзинки и множество скруток нитей на проксимальном участке корзинки. Стороны петель нитей соединены со сторонами смежных петель в дистальной части корзинки, образуя сетку, имеющую дистальное отверстие в дистальном конце корзинки, и множество боковых отверстий по конструкции корзинки. Дистальное отверстие в корзинке имеет такой размер, чтобы обеспечить зонду для литотрипсии возможность выдвигаться через дистальное отверстие.
Согласно одному варианту изобретения, соединение сторон петель достигается скручиванием каждой пары нитей, образующих соответствующие стороны, по крайней мере, на один виток.
Нити, образующие конструкцию корзинки, могут представлять собой одножильные проволоки или многожильные скрутки проволок.
Согласно еще одному варианту изобретения, нити, образующие конструкцию корзинки, изготовлены из металлического материала, имеющего свойства термомеханической памяти формы и сверхупругости. Например, металлический материал может быть сплавом на основе NiTi. Аналогично, металлический материал может быть нержавеющей сталью.
Когда это желательно, металлический материал может включать рентгеноконтрастный материал. Рентгеноконтрастный материал может, например, быть по крайней мере одним из следующих металлов: Pt, Au, Ag, Pd, W, Nb, Co, и Cu.
Согласно другому варианту изобретения, нити могут быть изготовлены из внутренней трубки, содержащей расположенную по оси рентгеноконтрастную проволоку.
Согласно еще одному варианту изобретения, медицинское устройство может включать один или более рентгеноконтрастных маркеров, прикрепленных к одной или более петлям.
Если нити, образующие конструкцию корзинки, представляют собой многожильные скрутки нитей, то они могут включать центральную основную проволоку и, по крайней мере, еще одну проволоку, закрученную вокруг указанной центральной основной проволоки. Если это желательно, эта другая проволока может быть сделана из материала, имеющего показатель рентгеноконтрастности выше, чем показатель рентгеноконтрастности центральной основной проволоки.
Согласно еще одному варианту изобретения, нити изготовляются из неметаллического материала. Примеры неметаллического материала включают капрон и нейлон, но не ограничены ими.
Согласно другому варианту изобретения, оболочка для расширения сделана из упругого прочного материала, который может быть, например, пластмассовым материалом или композитным материалом. Трубчатый элемент представляет собой изгибаемую трубку. Примеры материалов, подходящих для трубчатого элемента, включают полиамид, нейлон и полистирол, но не ограничены ими.
Согласно одному варианту изобретения, дистальный конец трубчатого элемента имеет утонченный участок, служащий для присоединения трубчатого элемента со скрутками нитей экстракционной корзинки по наружной круговой поверхности утонченного участка.
Согласно еще одному варианту изобретения, медицинское устройство включает трубку, надетую на скрутки нитей на утонченном участке. Предпочтительным, но не необходимым является изготовление трубки из термоусадочного материала.
Примеры зонда для литотрипсии включают электрогидравлический зонд для литотрипсии, электроимпульсный зонд для литотрипсии, ультразвуковой волновой зонд для литотрипсии, механический зонд для литотрипсии и свето-лазерный зонд для литотрипсии, но не ограничиваются ими.
Вышеупомянутая потребность удовлетворяется также методом для разрушения конкремента в теле на более мелкие фрагменты и удаления этих фрагментов из тела, при использовании медицинского устройства согласно данному изобретению.
Порядок шагов осуществления данного метода зависит от размера конкремента. Когда конкремент меньше, чем боковые отверстия в конструкции корзинки, то он может сначала быть захвачен корзиной и удержан в ней. Удержанный конкремент может быть расчленен на фрагменты. В этом случае метод включает следующие шаги:
(a) вставление медицинского устройства при сложенном положении корзинки через эндоскоп в тело вблизи конкремента;
(b) управление трубчатым элементом и оболочкой для расширения для открытия экстракционной корзинки, захвата конкремента в экстракционную корзинку и замыкания корзинки вокруг конкремента;
(c) управление зондом для литотрипсии для его выдвижения из просвета в трубчатом элементе и приближения к конкременту, удерживаемому в экстракционной корзинке;
(d) подача энергии на зонд для литотрипсии для разрушения конкремента на более мелкие фрагменты; и
(e) удаление медицинского устройства из тела, вместе, по крайней мере, с одним фрагментом конкремента, удерживаемым в пределах корзинки.
С другой стороны, когда конкремент относительно велик и не может пройти через боковые отверстия в конструкции корзинки, то конкремент сначала должен быть разрушен на фрагменты посредством зонда для литотрипсии. В этом случае метод включает следующие шаги:
(a) вставление медицинского устройства при сложенном положении корзинки через эндоскоп в тело вблизи конкремента;
(b) управление зондом для литотрипсии для его выдвижения из просвета в трубчатом элементе и дистального отверстия корзинки, чтобы подвести зонд для литотрипсии близко к конкременту, удерживаемому в экстракционной корзинке;
(c) подача энергии на зонд для литотрипсии для разрушения конкремента на более мелкие фрагменты;
(d) управление трубчатым элементом и оболочкой для расширения для открытия экстракционной корзинки, захвата, по крайней мере, одного фрагмента конкремента в экстракционную корзинку, и замыкания корзинки вокруг этого фрагмента;
(e) удаление медицинского устройства из тела вместе, по крайней мере, с одним фрагментом конкремента, удерживаемым в пределах корзинки.
Выше были охарактеризованы, причем достаточно широко, наиболее важные особенности изобретения, с тем, чтобы детальное его описание, которое следует в дальнейшем, могло быть лучше понято. Дополнительные детали и преимущества изобретения будут сформулированы в детальном описании и частично смогут быть оценены из описания, или изучены при практическом применении изобретения.

КРАТКОЕ ОПИСАНИЕ ИЛЛЮСТРАЦИЙ
Чтобы лучше понять изобретение и увидеть, как оно может быть выполнено практически, ниже будут описаны предпочтительные варианты осуществления изобретения, причем лишь в виде примеров, не ограничивающих данное изобретение, со ссылками на сопровождающие фигуры чертежей, на которых:
На фиг. 1 показан схематический вид сбоку в разрезе дистального участка медицинского устройства в развернутом положении согласно одному варианту изобретения;
На фиг. 2A и 2B показаны схематические виды сбоку, с частичным разрезом, медицинского устройства, показанного на фиг. 1, и постороннего объекта, расположенного перед экстракционной корзинкой, которая находится в развернутом и втянутом положениях, соответственно;
На фиг. 2С показан показан схематический вид сбоку, с частичным разрезом, дистального участка медицинского устройства, показанного на фиг. 1, и постороннего объекта, захваченного в корзинку;
На фиг. 3 показан вид в плане дистального участка медицинского устройства по данному изобретению, имеющего экстракционную корзинку согласно одному варианту изобретения.
На фиг. 4 показан вид в плане дистального участка медицинского устройства по данному изобретению, имеющего экстракционную корзинку согласно другому варианту изобретения.
На фиг. 5 показан вид в плане дистального участка медицинского устройства по данному изобретению, имеющего экстракционную корзинку согласно еще одному варианту изобретения.
На фиг. 6A схематически показано взаимное расположение конкремента и рабочего наконечника электрогидравлического зонда для литотрипсии;
На фиг. 6B схематически показано взаимное расположение конкремента и рабочего наконечника электроимпульсного зонда для литотрипсии;
На фиг. 7 схематически показано взаимное расположение конкремента и рабочего наконечника ультразвукового зонда для литотрипсии;
На фиг. 8 схематически показано взаимное расположение конкремента и рабочего наконечника механического зонда для литотрипсии; и
На фиг. 9 схематически показано взаимное расположение конкремента и рабочего наконечника лазерного зонда для литотрипсии.

ПОДРОБНОЕ ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Принципы действия медицинского устройства согласно настоящему изобретению могут быть лучше поняты при рассмотрении сопровождающего описания и рисунков, в которых одни и те же номера и буквы ссылок используются для того, чтобы идентифицировать те компоненты, которые показаны на рисунках по всему описанию данного изобретения. Следует учесть, что эти рисунки, которые могут быть не в масштабе, даются лишь в иллюстративных целях и не являются ограничительными в отношении объема изобретения. Для отдельных элементов даются примеры конструкций, материалов, размеров и процессов изготовления. Специалисты поймут, что многие из предоставленных примеров имеют подходящие варианты осуществления, которые могут иметь практическое применение.
На фиг. 1 показан схематический вид сбоку в разрезе дистального участка медицинского устройства 10 в развернутом положении согласно одному варианту изобретения. Медицинское устройство 10 включает удлиненный трубчатый элемент 11 типа катетера, который имеет проксимальный конец трубчатого элемента (не показан), дистальный конец 12 трубчатого элемента и идущий в осевом направлении внутренний просвет 13 в трубчатом элементе 11, чтобы обеспечить возможность вставления зонда для литотрипсии 14 в трубчатый элемент 11 с проксимального конца. Трубчатый элемент 11 представляет собой изгибаемую трубку, изготовленную из сравнительно жесткого, но достаточно податливого материала, что позволяет осуществлять ввод устройства в тело пациента (не показано) по извилистому пути. Примеры материалов, подходящих для изготовления трубчатого элемента 11, включают полиамид, нейлон и полистирол, но не ограничены ими.
Зонд для литотрипсии 14 устанавливается во внутреннем просвете 13, так что он может быть выдвинут или втянут оператором (не показан). Следует отметить, что данное изобретение не ограничено конкретным видом технологии литотрипсии, применяемой для разрушения конкрементов. В общем случае зонд для литотрипсии 14 включает рабочий наконечник 141, управляющий шток (стержень) 142, присоединенный к наконечнику 141, и блок питания (не показан), присоединенный к управляющему штоку 142. При работе устройства рабочий наконечник 141 подается на конкремент, например, камень (не показан), и блок питания активизируется, чтобы обеспечить энергию, достаточную для разрушения камня на гораздо более мелкие фрагменты. Различные типы зондов для литотрипсии 14, подходящие для осуществления целей данного изобретения, будут рассмотрены более подробно ниже, при рассмотрении фиг. 6A, 6B, 7, 8 и 9.
Медицинское устройство 10 включает также оболочку для расширения 15, выполненную как трубчатый катетер. Оболочка 15 является тонкостенной цилиндрической изгибаемой трубкой, приспособленной для проникновения в проход в теле (не показано), чтобы достичь местоположения, где находится конкремент, который необходимо расчленить на более мелкие фрагменты. Трубчатый элемент типа катетера установлен внутри оболочки 15 и может управляться оператором снаружи, с проксимального конца этой оболочки (не показано). Оболочка для расширения 15 может быть изготовлена, например, из гибкого, надежного и прочного пластмассового материала, такого как полиамид, поливинхлорид, нейлон, тефлон и т.д. Оболочка 15 может быть также изготовлена из композитного материала в виде проволочной сетки, или из листового проката (например, листовой нержавеющей стали). Когда это желательно, оболочка 15 может быть многослойной и состоять из различных материалов, способных обеспечить меняющиеся характеристики изгиба и жесткости по ее длине.
Медицинское устройство 10 включает также экстракционную корзинку 16, присоединенную к трубчатому элементу типа катетера на дистальном конце 12 трубчатого элемента. Экстракционная корзинка 16 используется в мочеточнике, мочевом пузыре или желчном тракте (не показаны), чтобы уловить конкремент, который может быть расчленен на более мелкие фрагменты с помощью зонда для литотрипсии 14, и извлечь фрагменты из проходов тела.
Вид в плане экстракционной корзинки 16 в развернутом (открытом) положении показан на фиг. 1, в соответствии с одним вариантом осуществления данного изобретения. В общем случае конструкция экстракционной корзинки 16 включает проксимальный участок 161 и дистальный участок 162, и состоит из множества нитей, изготовленных из одной или более проволок, которые выступают из проксимального конца корзинки 163 по направлению к дистальному концу корзинки 164 и затем возвращаются после изгибания к проксимальному концу 163, образуя множество петель 165 нитей. После образования петель в дистальной части 162, нити связываются в скрутки нитей 166 в проксимальной части 161 корзинки.
Согласно одному варианту изобретения, каждая нить, образующая конструкцию корзинки, является одножильной проволокой. Согласно другому варианту изобретения, каждая нить представляет собой многожильную скрутку.
Каждая нить экстракционной корзинки 16 может иметь диаметр поперечного сечения в диапазоне примерно от 0,05 мм до 0,15 мм. Диаметры проволок в нитях могут меняться от одной проволоки к другой, и/или по длине каждой проволоки.
Нити, применяемые для изготовления экстракционной корзинки 16, состоят из подходящего материала, который имеет надлежащую биосовместимость и термомеханическую память формы и/или свойства сверхупругости. Согласно одному варианту изобретения, нити изготовлены из металлического материала. Например, в качестве металлического материала может быть взят сплав на основе NiTi (например, Nitinol), нержавеющая сталь и другие материалы, обладающие хорошей памятью формы и хорошими характеристиками упругости или сверхупругости. Согласно другому варианту изобретения, нити изготавливаются из неметаллического материала, например, капрона, нейлона и т.д.
Согласно еще одному варианту изобретения, нити корзинки покрыты изолирующим слоем. Изолирующим слоем может, например, служить тефлон. Преимуществами тефлона являются его теплостойкость и низкий коэффициент механического трения, что обеспечивает дополнительное снижение травматизма.
Предпочтительно, но не необходимо, чтобы нити являлись рентгеноконтрастными, с тем чтобы обеспечить возможность их наблюдения с помощью флюороскопа по отношению к объекту, который подлежит извлечению. Так, согласно одному примеру, чтобы обеспечить рентгеноконтрастность, металлический материал, из которого изготовлены нити, может включать материал, который обеспечивает рентгеноконтрастность, напр., благородный металл, такой как золото, тантал, платина и т.д. Аналогично, металлический материал может быть сплавлен с одним или более металлов, таких как Pd, W, Nb, Co, Cu и т.д.
Согласно другому примеру, нити изготовлены из внутренней трубки (трубчатой скрутки), содержащей расположенную по оси рентгеноконтрастную проволоку. Согласно еще одному примеру, нити могут иметь рентгеноконтрастные отрезки определенной длины. Эти рентгеноконтрастные отрезки могут образовывать дистальный участок 162 корзинки или, по крайней мере, часть дистального участка.
Рентгеноконтрастность может также быть улучшена посредством процессов покрытия, типа напыления или гальванопокрытия рентгеноконтрастного материала на нити, или путем изготовления корзинки из этих нитей, обеспечивая, таким образом, слой рентгеноконтрастного покрытия на нитях.
Аналогично, рентгеноконтрастность может быть также улучшена при использовании рентгеноконтрастных маркеров (не показаны), которые могут быть присоединены к нитям, образовывающим корзинку, или помещены вокруг нитей. В этом случае материалы, которые имеют рентгеноконтрастность выше, чем сама конструкция корзинки, типа золота, тантала или платины, могут использоваться как маркеры и быть рационально размещены по частям корзинки, чтобы улучшить ее визуализацию. Например, экстракционная корзинка может включать один или более рентгеноконтрастных маркеров (не показаны), прикрепленных к нитям или помещенных вокруг нитей, образующих одну или более петель 165 нитей в дистальном участке 162. Рентгеноконтрастный маркер может быть, например, металлическим ободком, надетым на нить.
Согласно другому варианту изобретения, нити могут быть многожильными скрутками. В таком случае, чтобы улучшить рентгеноконтрастность, многожильные скрутки могут включать центральную внутреннюю проволоку и, по крайней мере, еще одну проволоку, закрученную вокруг указанной центральной внутренней проволоки, и изготовленную из материала, имеющего степень рентгеноконтрастности выше, чем степень рентгеноконтрастности указанной центральной внутренней проволоки. Примеры такого материала включают, но не ограничены, следующими: Pt, Au, Pd, Ag, Ta и т.д.
Согласно одному варианту изобретения, каждая нить выходит из определенной точки на проксимальном конце 163 корзинки и проходит по направлению к дистальному концу 164 корзинки, так что образуется петля. После образования петли нить возвращается в исходную точку на проксимальном конце 163 корзинки, так что образуется одна из скруток нитей 166 корзинки в проксимальной части 161.
Согласно другому варианту изобретения, каждая нить выходит из определенной точки на проксимальном конце 163 корзинки, и затем, после скручивания с другими нитями, приходит в другую точку на проксимальном конце 163 корзинки, где нити встречаются с одной или более других нитей. В этом случае каждая скрутка нитей 166 образуется двумя или более различными нитями, которые соответствуют сторонам смежных петель.
Описание различных вариантов экстракционной корзинки 16 медицинского устройства 10 будет осуществлено более детально ниже, при рассмотрении фиг. 3 – 5.
На проксимальном конце 163 корзинки скрутки нитей 166 присоединены к трубчатому элементу типа катетера по внешней окружности дистального конца 12 трубчатого элемента. Соединительный участок 167 может, например, представлять собой утонченный участок на дистальном конце трубчатого элемента 11 (как показано на фиг. 1). Осевой размер утонченного участка может, например, быть в диапазоне примерно 15 мм – 25 мм. В другом случае соединительный участок 167 может включать отдельный ободок, например, пустотелый, изготовленный из металла, например, нержавеющей стали и т.д.
Нити из скруток корзинки 166 могут быть подрезаны и присоединены к трубчатому элементу 11 по внешней окружности дистального конца 12 трубчатого элемента одним или более способом соединения.
В одном варианте скрутки нитей 166 экстракционной корзинки могут быть присоединены непосредственно к трубчатому элементу 11. Например, скрутки нитей 166 могут быть присоединены к трубчатому элементу 11 на соединительном участке 167 обычной пайкой, паянием твердым припоем или сваркой. Аналогично, медицински приемлемое клеящее вещество может также быть использовано, чтобы зафиксировать или присоединить скрутки нитей 166 к трубчатому элементу 11. Пример клеящего вещества включает циакриновый клей LOCTITE® 4011, но не ограничен им.
Чтобы увеличить механическую прочность, тонкая трубка 168 может быть надета на скрутки нитей 166 на соединительном участке 167, как показано на фиг. 1. Трубка 168 может быть изготовлена из термоусадочного материала. Пример материала, подходящего для трубки 168 включает фторопласт-4 (PTFE), но не ограничен им. Толщина стенки трубки 168 может быть, например, в диапазоне примерно 0,005 мм – 0,01 мм.
Согласно другому варианту изобретения, для присоединения скруток нитей 166 или петли к трубчатому элементу 11 может быть использован отдельный ободок (не показан). Ободок может быть присоединен к трубчатому элементу 11 и к скруткам нитей, предпочтительно, с помощью обычной пайки, сварки или паяния твердым припоем, хотя могут применяться также и другие известные технологии, такие как клейка. Например, если используется пайка, то конец трубчатого элемента 11 вначале травится, предпочтительно кислотой, а затем нейтрализуется и сушится. Припой тогда применяется как к трубчатому элементу 11, так и к трубке, они спаиваются вместе и избыток припоя снимается. Вслед за этим части должны быть нейтрализованы, высушены и очищены.
На дистальном участке 162 корзинки петли 165 нитей перекрывают друг друга и/или переплетаются друг с другом таким образом, чтобы образовать зазоры между нитями. Петли 165 образуют сетку, которая имеет дистальное отверстие 169 на дистальном конце 164 корзинки и множество боковых отверстий 170 по конструкции корзинки. Обратите внимание, что термин “перекрывают” в данном случае относится к такому расположению нитей, образующих петли, при котором один элемент пересекает другие, т.е. одна из нитей всегда находится над или под другими нитями. Термин “переплетаются” в данном случае относится к такому положению, когда, по крайней мере, одна нить переплетается с другими нитями, т.е. одна из нитей проходит сперва над одной пересекаемой нитью а затем под следующей пересекаемой нитью.
Дистальное отверстие 169 в корзинке имеет такие размеры, чтобы обеспечить возможность выдвижения зонда для литотрипсии 14 через дистальное отверстие 169, для того, чтобы поместить зонд 14 вблизи объекта (не показан), когда тот расположен перед корзинкой. Это позволяет приложить разрушающую энергию к сравнительно крупным конкрементам. Крупный конкремент может быть только помещен перед корзинкой, поскольку он не может пройти через боковые отверстия 170, чтобы быть захваченным и удержанным внутри корзинки вследствие его большого размера. После разрушения такого конкремента на части, более мелкие куски могут быть захвачены и удержаны в корзинке для их дальнейшего разрушения внутри корзинки, или извлечены из тела пациента.
Метод для удаления конкрементов в проходах и полостях живого тела согласно данному изобретению включает следующие шаги. Согласно одному варианту данного изобретения, эндоскоп (не показан), управляемый оператором, вначале вставляется в проход и/или полость тела пациента вблизи конкремента известными средствами, например, посредством хирургического надреза, через мочеточник или через любой другой проход. Эндоскопом может служить, например, цистоскоп, уретроскоп или другое подходящее устройство, которое включает как источник света, так и волоконную оптику, так что, если устройство вставлено правильно, то камень можно увидеть. Затем медицинское устройство по данному изобретению вводится через эндоскоп в тело.
В том случае, когда конкремент сравнительно велик, и корзинка не может охватить конкремент для его захвата, или он не может пройти через боковые отверстия в конструкции корзинки, конкремент должен быть вначале расчленен на фрагменты с помощью зонда для литотрипсии 14.
Фиг. 2A и 2B иллюстрируют два примера действия медицинского устройства, показанного на фиг. 1, когда объект (конкремент) 21 расположен перед экстракционной корзинкой 16. Необходимо понимать, что когда объект расположен перед экстракционной корзинкой 16, то во время процедуры корзинка может быть либо открытой, либо закрытой. В частности, когда корзинка полностью открыта, как показано на фиг. 2A, то открытая корзинка 16 образует клетку, позволяющую фрагментам расчлененного объекта войти в боковые отверстия 170, оставленные между нитями. Чтобы разбить объект, зонд для литотрипсии 14 может выдвигаться через дистальное отверстие 169 для подведения рабочего наконечника 141 к объекту 21. В зависимости от технологии литотрипсии, конец рабочего наконечника 141 зонда для литотрипсии 14 может быть либо вблизи объекта 21, либо в непосредственном контакте с поверхностью объекта.
Аналогично, корзинка 16 может быть только частично открыта, или даже полностью втянута в оболочку 15. Как показано на фиг. 2B, зонд для литотрипсии 14 может быть выдвинут через дистальное отверстие 169 и введен в контакт с объектом, в то время как корзинка расположена внутри оболочки 15.
После подведения зонда для литотрипсии 14 близко к объекту 21, зонд получает энергию для приложения разрушающего усилия к объекту. После расчленения объекта на фрагменты корзинка может быть продвинута для открытия и захватывания фрагментов, имеющих меньшие размеры, чем размеры первоначального объекта 21.
Экстракционная корзинка 16 и оболочка 15 могут перемещаться относительно друг друга для открывания и закрывания корзинки 16. В зависимости от манипуляций трубчатым элементом 11, корзинка 16 может либо втягиваться внутрь оболочки 15, чтобы обеспечить возможность проникновения оболочки 15 через проход тела, либо выдвигаться из оболочки 15. Благодаря упругости материала нитей, в выдвинутом положении корзинка 16 открыта и образует клетку, обеспечивая, таким образом, возможность ввода объекта (напр., конкремента) внутрь корзинки через зазоры, оставленные между смежными нитями. Дальнейшее втягивание корзинки 16 внутрь оболочки 15 приводит к тому, что клетка складывается и захватывает объект в корзинку.
Когда объект сравнительно невелик, дистальный концевой участок корзинки продвигается несколько далее камня, который подлежит удалению. Затем корзинка открывается и производятся манипуляции инструментом с целью захватывания конкремента в корзинку. Как только конкремент захвачен, корзинка замыкается вокруг конкремента, с тем чтобы удержать конкремент в корзинке.
На фиг. 2C показан пример действия медицинского устройства, изображенного на фиг. 1, когда объект (конкремент) 21 захвачен внутрь экстракционной корзинки 16. В зависимости от технологии литотрипсии, конец рабочего наконечника 141 зонда для литотрипсии может быть приближен к поверхности объекта 21 или введен с ней в непосредственный контакт. Затем зонд для литотрипсии 14 получает энергию для разрушения конкремента на гораздо более мелкие фрагменты. Крупные фрагменты конкремента удерживаются в корзинке, в то время как, по крайней мере, в случае почечных камней, более мелкие фрагменты могут выйти из корзинки и впоследствии выйти из тела с мочой. В конечном счете, извлечение оболочки 15 вместе с эндоскопом позволит удалить все устройство из органа тела вместе с объектом, зафиксированным внутри корзинки.
Конструкция медицинского устройства согласно данному изобретению может быть выполнена с различными размерами и длинами, с тем, чтобы обеспечить возможность прохождения через каналы и полости в живом теле, имеющие различные размеры, и с учетом различных размеров рабочих каналов цистоскопов, уретроскопов и других эндоскопов, имеющихся на рынке.
Вообще говоря, полная осевая длина устройства согласно данному изобретению может находиться, например, в диапазоне от примерно 1 м до примерно 3 м. Меньшая или большая длина может также иметь место, если это требуется для проведения определенной процедуры.
Следует понимать, что общий диаметр поперечного сечения м


Автор:Макаров Сергей Федорович
Дата:07.04.2011
Визитная карточка:Переводчик в Израиле, Хайфа